

Academic performance comparing ethnic minority and White doctors in the UK GP licensing assessment

Presenter: Niro Siriwardena MBBS MMedSci PhD FRCGP

Professor of Primary And Prehospital Healthcare, University of Lincoln

Co-authors: Vanessa Botan, Nicki Williams, Kim Emerson, Fi Kameen, Lindsay Pope, Adrian Freeman, Graham Law

Conflicts of interest

RESEARCH AND DEVELOPMENT LEAD FOR ASSESSMENT MRCGP

FUNDING:

Differential attainment or performance

Consistent differences by candidate (protected) characteristics

Important, controversial

Ethical and legal issues

No clear explanations but theories of why it exists and what to do about it abound

MRCGP and candidate ethnicity

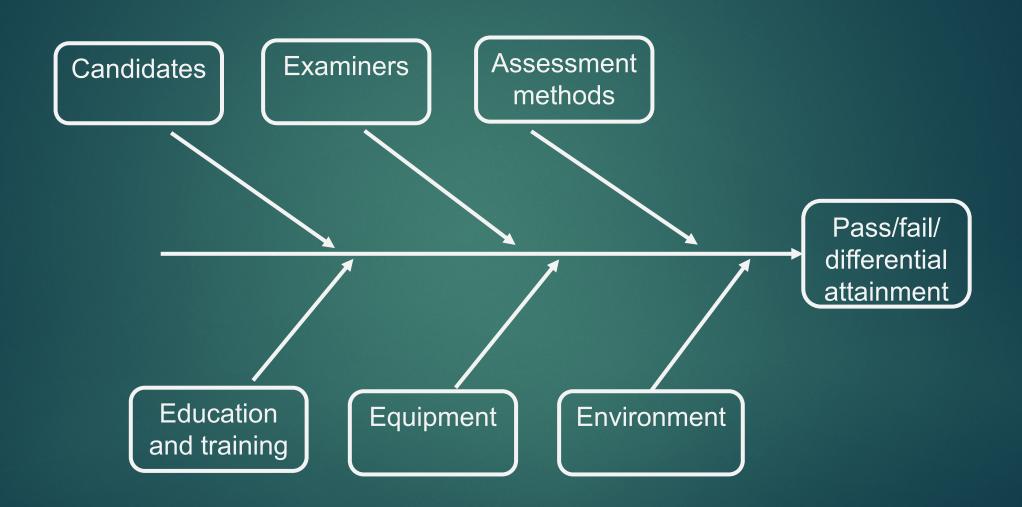
Consistent differences in performance for IMGs and UK trained ethnic minority candidates in MRCGP and other postgraduate and undergraduate medical examinations

Independent Review of the Membership of the Royal College of General Practitioners (MRCGP) examination

RESEARCH

Academic performance of ethnic minority candidates and discrimination in the MRCGP examinations between 2010 and 2012: analysis of data

Aneez Esmail Chris
Professor of General Practice Prof


Chris Roberts Professor of Biostatistics Aneez Esmail professor of general practice, Chris Roberts professor of biostatistics

Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK

Esmail A, Roberts C. Independent review of the MRCGP examination. University of Manchester 2013.

Esmail A, Roberts C. Academic performance of ethnic minority candidates and discrimination in the MRCGP examinations between 2010 and 2012:analysis of data. BMJ 2013.

Potential factors contributing to performance

Exam factors

Examiner

- Examiner pool bias?
- Unconscious bias?
- Overt discrimination

Role-player

- Role players unrepresentative?
- Role players biased?

Psychometric

Bias in standard setting?

Case/item

Case or item bias?

Candidate/educational factors

Personal attributes

- •Culture, ethnicity/nationality
- •Sex/gender
- Age
- Specific learning difficulty

Psychological factors

- Motivation
- Insight
- Expectation

Social context

- Relationships with educators
- Relationships with peers

Educational experience

- School
- Undergraduate
- Postgraduate
- Accommodations for disability or difference

GP licensing in UK

Applied Knowledge Test (AKT)

Clinical Skills
Assessment (CSA) /
Recorded Consultation
Assessment (RCA)

Workplace Based Assessment (WPBA)

Annual Review of Competence Progression (ARCP)

Aim

- ► Aim: to investigate differences in MRCGP performance comparing ethnic minority and White doctors.
- Research question: is performance in the MRCGP (AKT, CSA, RCA or WPBA) significantly different in ethnic minority versus White doctors taking into account other factors?
- Null hypothesis: no difference in performance between ethnic minority and White doctors.
- ► Ethical approval: University of Lincoln Human Ethics Committee (Reference 2020_3645).
- ► Funding: Health Education England

Methods

Longitudinal design:
retrospective data for
doctors' performance
from selection for GP
specialty training in 2016
to licensing test

Linked data: selection, licensing and demographic data

Multivariable logistic regression models: to determine effect of ethnicity on licensing performance

Outcomes:

AKT/CSA/RCA - Pass/Fail

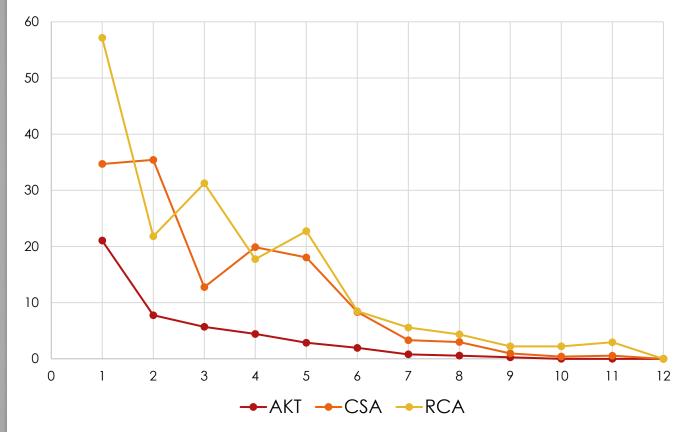
WPBA/ARCP Standard/Developmental

Covariates: sex, country of primary medical qualification, declared disability and MSRA score bands

Assumptions of no multicollinearity and no outliers checked

ORs represent odds that outcome would occur given a predictor, compared to odds of outcome occurring the absence of that predictor

Pseudo r-squared (pseudo R2): represents certainty with which model can predict dichotomous outcome (y=0 or y=1)


Selection to licensing assessment

Sample

- 3429 doctors entering GP specialty training in 2016
- AKT 2883 CSA 2313 RCA 545 WPBA—ARCP 3168
- Sex: female 63.8%; male: 36.2%
- Ethnic group: White British 54.0%; minority ethnic 43.0%; mixed 3.0%
- Primary medical qualification: UK 76.8%; non- UK 23.2%
- Disability: declared 12.0%; not declared 88.0%

Percentages failing assessments per MSRA score band

MSRA scores divided into 12 bands:

Band 1: < 400

Band 2: 400 -419

Band 3: 420 - 439

Band 4: 440 – 459

Band 5: 460 – 479

Band 6: 480 – 499

Band 7: 500 - 519

Band 8: 520 - 539

Band 9: 540 - 559

Band 10: 560 - 579

Band 11: 580 - 599

Band 12: 600+

Predictors	AKT pass rates						
	OR	S.E.	95% CI of OR	p-value			
Gender (Female)							
Male	1.29	0.40	0.70, 2.36	0.41			
Ethnicity (White)							
Ethnic Minority	2.05	0.72	1.03, 4.10	0.042			
Mixed	1.20	1.30	0.14, 10.00	0.87			
Qualification Country (UK)							
Not-UK	1.17	0.46	0.54, 2.54	0.69			
Disability (No)							
Yes	0.86	0.32	0.42, 1.77	0.69			
MSRA Bands (under 400)							
400 –419	3.47	1.76	1.28, 9.36	0.014			
420 – 439	4.29	2.42	1.42, 12.94	0.010			
440 – 459	6.86	3.68	2.40, 19.11	< 0.001			
460 – 479	9.93	5.77	3.18, 31.03	< 0.001			
480 – 499	15.34	9.86	4.35, 54.08	< 0.001			
500 – 519	37.53	28.75	8.37, 168.40	< 0.001			
520 –539	53.30	46.67	9.58, 296.52	<0.001			
540 - 559	104.06	117.95	11.28, 959.69	<0.001			
Cons	1.69	0.97	0.55, 5.21	<0.001			
and 10 11 and 10 activated in the man	pseudoR ² = 0.13, $X^2(13)$ = 56.78, p < 0.001						

N.B. Bands 10, 11, and 12 not included in the model because they perfectly predict passing the AKT

Predictors		CSA p	ass		RCA pass				
	OR	S.E.	95% CI of OR	p-value	OR	S.E.	95% CI of OR	p-value	
Gender (Female)									
Male	0.58	0.12	0.39, 0.86	0.007	0.74	0.25	0.37, 1.45	0.377	
Ethnicity (White)									
Ethnic Minority	0.72	0.19	0.43, 1.20	0.201	0.48	0.25	·	0.156	
Mixed	1				0.14	0.13	0.20, 0.94	0.043	
PMQ (UK)									
Not-UK	0.27	0.07	0.16, 0.45	<0.001	0.30	0.15	0.11, 0.80	0.017	
Disability (No)									
Yes	0.38	0.09	0.24, 0.61	<0.001	0.58	0.22	0.27, 1.23	0.156	
MSRA band (< 400)									
400 – 419	0.92	0.39	0.40, 2.10	0.848	5.46		,	0.006	
420 – 439	2.58	1.29	0.97, 6.88	0.059	5.98	4.73	1.27, 28.18	0.024	
440 – 459	1.04	0.43	0.47, 2.33	0.915	5.00	3.07	,	0.009	
460 – 479	0.99	0.41	0.44, 2.22	0.972	2.60	1.53	,	0.107	
480 – 499	1.48	0.67	0.61, 3.60	0.389	6.24		,	0.012	
500 - 519	4.00	2.28	1.31, 12.23	0.015	5.95	4.96	,	0.032	
520 – 539	2.47	1.34	0.85, 7.15	0.097	9.89	12.15	0.89, 109.88	0.062	
540 – 559	/				1				
560 – 579	11.58	12.67	·	0.025	9.97		,		
580 – 599	6.86	7.53	0.80, 58.98	0.080	8.03	10.16	0.67, 95.92	0.100	
600+	1								
Cons	17.76	8.66	6.83, 46.20	<0.001	7.69	6.30	1.55, 38.28	0.013	
	pseudoF	$R^2 = 0.21, X^2(13)$)= 178.87, p < 0.0	01	pseudoR ² = 0.18, $X^2(14)$ = 54.75, p < 0.001				

Number of ARCP developmental outcomes				Predictors	Presence of ARCP developmental outcomes				
	В	S.E.	95% CI of B	p-value		OR	S.E.	95% CI of OR	p-value
Gender (Female)					Gender (Female)				
Male	0.26	0.04	0.19, 0.34	<0.001	Male	0.45	0.06	0.35, 0.58	<0.001
Ethnicity (White)					Ethnicity (White)				
Ethnic Minority	0.08	0.04	-0.00, 0.17	0.064	Ethnic Minority	0.76	0.12	0.56, 1.04	0.086
Mixed	-0.02	0.10	-0.22, 0.18	0.864	Mixed	0.96	0.43	0.40, 2.33	0.931
Qualification					Qualification				
Country (UK)					Country (UK)				
Not-UK	0.28	0.06	0.17, 0.39	<0.001	Not-UK	0.40	0.07	0.29, 0.55	<0.001
Disability (No)					Disability (No)				
Yes	0.51	0.06	0.40, 0.62	<0.001	Yes	0.29	0.05	0.21, 0.41	<0.001
MSRA Bands					MSRA Bands				
(under 400)					(under 400)				
400 – below 420	-0.15	0.13	-0.41, 0.11	0.270	400 – below 420	0.89	0.32	0.44, 1.80	0.749
420 – below 440	-0.48	0.14	-0.75, -0.21	<0.001	420 – below 440	1.83	0.68	0.88, 3.81	0.109
440 – below 460	-0.24	0.13	-0.50, 0.00	0.054	440 – below 460	1.27	0.44	0.66, 2.49	0.469
460 – below 480	-0.42	0.13	-0.66, -0.17	0.001	460 – below 480	1.67	0.57	0.85, 3.28	0.134
480 – below 500	-0.60	0.13	-0.85, -0.35	<0.001	480 – below 500	2.17	0.77	1.08, 4.33	0.029
500 – below 520	-0.65	0.13	-0.90, -0.40	<0.001	500 – below 520	2.68	0.98	1.31, 5.47	0.007
520 – below 540	-0.73	0.13	-0.99, -0.44	<0.001	520 – below 540	5.90	2.42	2.63, 13.20	<0.001
540 – below 560	-0.70	0.13	-0.96, -0.44	<0.001	540 – below 560	6.20	2.74	2.61, 14.76	<0.001
560 – below 580	-0.71	0.14	-0.98, -0.45	<0.001	560 – below 580	6.22	2.87	2.52, 15.39	<0.001
580 – below 600	-0.73	0.14	-1.01, -0.46	<0.001	580 – below 600	15.01	10.15	3.99, 56.49	<0.001
600 and over	-0.73	0.16	-1.03, -0.42	<0.001	600 and over	10.65	8.53	2.22, 51.15	0.003
Cons	0.66	0.13	0.41, 0.91	<0.001	Cons	4.44	1.60	2.19, 9.01	<0.001
	pseudo R^2 = 0.21, F (16,1953) = 32.95, p < 0.001					pseudoR ² = 0.23, $X^2(16)$ = 455.88, p < 0.001			

Limitations

- Candidates on training extensions, maternity leave, etc. may have successfully completed training after study end.
- Did not take into account differences by medical school, country of primary qualification, ethnic group, or nature of disability.
- Not all participants who were unsuccessful in licensing tests would have had opportunity to take them the permitted four times. For AKT and CSA this number was small (only 6% of candidates), but it involved all participants for the RCA.

Conclusions

- First UK study to link performance at selection with all outcomes at licensing for doctors undertaking speciality training for general practice.
- Doctors' ethnicity did not reduce the chance of passing GP licensing tests once sex, place of primary medical qualification, declared disability and selection (MSRA) scores taken into account: prior attainment and IMG status main factors influencing performance on licensing assessments.
- Specific learning difference, male sex and IMG status associated with poorer performance in CSA and WPBA-ARCP.
- MSRA scores for doctors at selection predicted GP licensing outcomes for MRCGP AKT, CSA, RCA, and WPBA-ARCP within five years of starting training. Doctors scoring below optimal MRSA threshold (500) may need additional support during training to maximise chances of achieving licensing.

Implications

Causes of differential attainment amenable to intervention

- Scores at selection
- Early assessment, provision of support and reasonable adjustments for dyslexia
- Addressing prior differences in education and training including non-UK PMQ

Further research

Educational interventions incorporating selection scores, dyslexia support and reasonable adjustments, educational and training deficits

Thank you

Contact: nsiriwardena@lincoln.ac.uk Research Centre: https://www.cahru.org.uk/

Research

Aloysius Niroshan Siriwardena, Vanessa Botan, Nicki Williams, Kim Emerson, Fiona Kameen, Lindsey Pope, Adrian Freeman and Graham Law

Performance of ethnic minority versus White doctors in the MRCGP assessment 2016–2021:

a cross-sectional study

Siriwardena AN, Botan V, Williams N, Emerson K, Kameen F, Pope L, Freeman A, Law GR. Academic performance of ethnic minority versus White doctors in the MRCGP assessment 2016-2021: cross sectional study. BJGP 2023; 73 (729): e284-e293. DOI: 10.3399/BJGP.2022.0474.